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Volumetric methods for evaluating energy loss and
heat transfer in cavity flows‡

Stuart Norris and Gordon Mallinson∗,†

Department of Mechanical Engineering, The University of Auckland, Auckland, New Zealand

SUMMARY

Methods have been developed for calculating irreversible energy losses and rates of heat transfer from
computational fluid dynamics solutions using volume integrations of energy dissipation or entropy pro-
duction functions. These methods contrast with the more usual approach of performing first law energy
balances over the boundaries of a flow domain. Advantages of the volumetric approach are that the
estimates involve the whole flow domain and are hence based on more information than would otherwise
be used, and that the energy dissipation or entropy production functions allow for detailed assessment of
the mechanisms and regions of energy loss or entropy production.

Volume integrations are applied to the calculation of viscous losses in a lid-driven cavity flow, and to
the viscous losses and heat transfer due to natural convection in a side-heated cavity. In the convection
problem comparison with the entropy increase across a stationary heat conducting layer leads to a novel
volume integral expression for the Nusselt number. The predictions using this method compare well with
traditional surface integrals and benchmark results. Copyright q 2007 John Wiley & Sons, Ltd.
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INTRODUCTION

The conventional approach for estimating the energy loss and heat transfer in a domain is to place
a control volume around it and perform momentum and energy balances at the boundaries of the
volume. An alternative approach is to estimate the irreversible losses directly. For a viscous flow
energy is lost irreversibly as the fluid works against viscosity, and this loss can be represented
as a volumetric energy sink by the viscous dissipation function. This is appropriate, even when
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1408 S. NORRIS AND G. MALLINSON

the flow can be regarded as being isothermal, in which case the viscous dissipation is insufficient
to significantly influence the distribution of specific enthalpy in the fluid. However, as discussed
later, viscous dissipation is more likely to influence a second law analysis and is hence relevant
for the estimation of irreversible losses.

To demonstrate the utility of volumetric expressions they have been applied to two well-studied
flows, the lid-driven cavity, and natural convection in a differentially heated cavity. The lid-driven
cavity flow [1, 2] is used to demonstrate how the work expended against the viscosity of the fluid
can be estimated by both boundary integration of the product of velocity and shear stress on
the sliding surface, and also by the volume integration of the viscous dissipation function. The
natural convection flow [3] demonstrates how volume integrations produce estimates for the Nusselt
number that can be compared with values obtained by calculating the heat flux at the surface.

MATHEMATICAL MODELLING

For the modelled flows the fluid motion and heat transfer are assumed to be well represented by the
Boussinesq approximation. Apart from the influence of thermal expansion on the buoyancy term,
the fluid is assumed to be incompressible and have constant properties. Equations (1) and (2) are the
relevant versions of the momentum and energy equations, respectively. The only departure from the
usual treatment of such flows is the inclusion of the viscous dissipation term in the energy equation.
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The function � is the viscous dissipation function which for a three-dimensional Cartesian
coordinate system has the form
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In a two-dimensional coordinate system � reduces to
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The equations can be written in non-dimensional forms by choosing appropriate reference quanti-
ties for all the variables in the governing equations. Equations (5) and (6) are the result of choosing
a single characteristic length L, a reference velocity Uref, using �U 2

ref as a reference for pressure
and representing the absolute temperature by T = T0 + �T �.

Du
Dt

=−∇P − Ra

Re
�ĝ + 1

Re
∇2u (5)

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:1407–1423
DOI: 10.1002/fld



ENERGY LOSS AND HEAT TRANSFER IN CAVITY FLOWS 1409

D�

Dt
= 1

Pe
[∇2� + Ec Pr�] (6)

Conventional practice is followed, whereby it is understood that the variables appearing in equations
containing non-dimensional numbers have been scaled whereas those containing dimensional
parameters have not. Re is the Reynolds number, Ra the Rayleigh number, Pe the Peclet number,
Pr the Prandtl number, and Ec the Eckert number (see Appendix A). The product EcPr, which
indicates the relative strength of viscous dissipation to conduction in the transport of energy, is
called the Brinkmann number.

For a forced flow, such as that in a lid-driven cavity, there is an obvious choice for Uref. For a
natural convection flow, a choice that is often made is

Uref = k

�cpL
= �

L
⇒ Pe= 1 (7)

If this choice is made, Equations (5) and (6) become,

Du
Dt

=−∇P − Ra Pr�ĝ + Pr∇2u (8)

D�

Dt
=∇2� + Ec Pr� (9)

and the Eckert and Brinkman numbers are

Ec= U 2
ref

cp�T
= �2

cpL2�T
, Ec Pr = ��

cpL2�T
(10)

Note that in the convection example discussed in this paper, the scaled maximum velocities will not
necessarily be of order unity and this will influence the value of EcPr at which viscous dissipation
becomes important.

IRREVERSIBLE ENERGY LOSSES AND ENTROPY PRODUCTION

For many common flow situations the Brinkmann number is small and the viscous dissipation
function can be dropped from Equation (6) or (9). This means that the heat released as work is done
against viscosity does not influence the flow and temperature fields. The energy is, nevertheless,
lost irreversibly from the fluid and the rate of loss can be estimated by integrating the viscous
dissipation function over the volume occupied by the fluid

Q̇irrev = �
∫
V

� dv (11)

For an open control volume surrounding a steady flow the conservation of energy can be expressed as

Q̇ − Ẇ = �Ė (12)

where Q̇ is the heat transfer into the volume, Ẇ is the rate of work done by the fluid on its
surroundings and �Ė and is the total rate at which energy leaves the volume. For the processes
considered here, �Ė is a summation over all openings of the outwards energy flow rates.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:1407–1423
DOI: 10.1002/fld



1410 S. NORRIS AND G. MALLINSON

The rate of heat generation by viscous dissipation, Q̇irrev, is eventually transferred across the
boundaries and is lost by the fluid. It is therefore a negative contribution to Q̇ in Equation (12).

Following a second law elemental control volume analysis (e.g. [4, pp. 99–101]), the volumetric
rate of entropy production in a fluid with constant properties can be written as

Ṡ′′′ = 1

T
∇ · q − 1

T 2
q · ∇T + �

Ds

Dt

= − 1

T
k∇2T + k

T 2
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(13)

The canonical relation de= T ds − Pd(1/�) leads to

�
Ds

Dt
= �

T

De

Dt
− P

�T

D�

Dt
(14)

For incompressible flow, D�/Dt = 0 and De/Dt = cpDT /Dt . Substituting these relationships in
(14) and using the energy equation (2),

�
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(15)

Although derived for incompressible flow here, Equation (15) also holds for compressible flows,
e.g. Equation 6.3.9 in [5] or Equation 3.4.11 in [6].

Substituting (15) into (13) leads to

Ṡ′′′ = k

T 2
(∇T )2 + ��

T
(16)

The non-dimensional form of Equation (16) is
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As recognized by others [4, 7], the immediate implication of (17) is that viscous dissipation is
more likely to play a role in the production of entropy than it does in the conservation of energy
because the ratio between the viscous dissipation and heat conduction terms is modified by the
temperature ratio �, which is often small.

LOSSES IN LID-DRIVEN CAVITY FLOW

Possibly the simplest flow to model is that in a two-dimensional lid-driven cavity, a schematic
of which is given in Figure 1. The cavity is of unit dimensions in the x and y directions, with
the upper surface being driven to the right at a prescribed velocity. To prevent the velocity
being multi-valued in the upper two corners of the cavity, as occurs with the conventional driven
cavity problem where the velocity of driven wall is constant along it’s length [1], the regularized
(i.e. homogeneous) boundary condition of Shen [2] was used where the velocity of the upper
surface varies as U (x)= 16x2(1 − x)2 over the range 0�x�1, being at a maximum at the centre
of the cavity and decreasing to zero in the corners.
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Figure 1. The regularized lid-driven cavity.
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Figure 2. Work and heat flows for the lid-driven cavity.

A first law analysis for the domain gives

−Ẇtop − Q̇irrev = 0 (18)

the sign convention for the work and heat flows being given in Figure 2.
The only work performed on the cavity is that by the motion of the lid, which in dimensional

terms is

Ẇtop =−�
∫ 1

0
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For a constant viscosity the irreversible energy loss due to the viscous dissipation is
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1412 S. NORRIS AND G. MALLINSON

LOSSES AND HEAT TRANSFER IN BUOYANT FLOW

For natural convection flow, the driving force is thermally induced buoyancy. The analysis of the
irreversibilities in the flow must include the temperature and heat transfer within the fluid.

It is useful for the analysis that follows to apply the integration of the volumetric entropy
generation function (16) to calculate the entropy produced by heat conduction through a solid slab.
Using the notation in Figure 3,

T = Th + Tc − Th
L

x and ∇T = Tc − Th
L

(21)

The expression for volumetric entropy generation is

Ṡ′′′ = k(Tc − Th)

(LTh + (Tc − Th)x)2
(22)

The entropy production rate is then given by

Ṡ = A
∫ L

0
Ṡ′′′ dx = Ak(Th − Tc)2

LThTc
(23)

The rate of heat transfer through the slab is, of course, given by

Q̇ = Ak(Th − Tc)

L
(24)

so that the entropy production rate is related to the heat transfer rate by

Ṡ = Q̇
(Th − Tc)

ThTc
= Q̇

(
1

Tc
− 1

Th

)
(25)

The last result could also have been obtained by applying the second law directly to a control
volume around the slab.

x
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Q
hT cT

L

.

Figure 3. Notation for entropy production for heat flow through a stationary domain.
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Figure 4. Natural convection in a cavity heated from the side, with adiabatic upper and lower walls.

Consider now convection in a box that has vertical isothermal hot and cold boundaries of
area A and separated by a distance L. The heat transfer is in the x direction and is the result of
buoyancy-induced convection, as shown in Figure 4. The rate of entropy production is

Ṡ = k
∫
V

[(∇T

T

)2

+ �

k

�

T

]
dv (26)

Equation (26) represents the total rate of entropy production in the cavity. It is usual to separate the
two mechanisms of entropy production and associate only the thermal term with heat transfer [4].
However, in the convection problem the only energy transport across a control volume surrounding
the cavity is by heat transfer. Hence, the viscous dissipation is included in (26).

Although the rate of entropy production is of interest in its own right, it can have a more useful
interpretation in the present context if it is related by Equation (25) to the heat transfer rate by
conduction through a stationary layer having the same dimensions. Equating (25) and (26) leads to

Q̇ = kThTc
(Th − Tc)

∫
V

[(∇T

T

)2
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k

�

T

]
dv (27)

Equation (27) is a volume integration that yields the rate of heat transfer through the layer. A heat
transfer coefficient can be recovered using

h = Q̇

A(Th − Tc)
= kThTc

A(Th − Tc)2

∫
V
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T
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k

�

T

]
dv (28)

The Nusselt number can now be recovered by multiplying (28) by L/k or remembering that for
this convection scenario, the Nusselt number is simply the ratio of the rate of heat transfer to that
which occurs when there is no fluid motion

Nu = Q̇L
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= LThTc

A(Th − Tc)2

∫
V
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dv (29)
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In terms of non-dimensional variables when T0 = Tc and �T = Th − Tc

Nu = (1 + �)
∫
V

[( ∇�

1 + ��

)2

+ EcPr

�

�

1 + ��

]
dv (30)

When the viscous dissipation can be neglected, the Nusselt number is given by

Nu = (1 + �)
∫
V

( ∇�

1 + ��

)2

dv (31)

When � is very small

Nu ≈
∫
V

(∇�)2 dv (32)

APPLICATION OF THE VOLUMETRIC METHODS

To model the flows two computer codes were used, one that uses a structured Cartesian mesh,
the second which uses an unstructured grid. EHOA [8] is a finite volume code that uses SIMPLE
velocity–pressure coupling [9] and Rhie–Chow velocity interpolation [10] on a structured collocated
mesh. For the current study, the velocity and temperature fields were solved on a regular hexahedral
mesh. ALE [11] is an unstructured finite volume code that uses a MAC [12] coupling scheme
on a mesh of Voronoi cells. Both codes used double precision (i.e. 64 bit) arithmetic, and all
calculations iterated until the RMS residuals were reduced by eight orders of magnitude. Solutions
were calculated using second-order central differencing, and meshes varied in size from 322 to
2562 cells. Typical meshes for the two flow solvers, used for the 322 calculations, are shown in
Figure 5.

Volumetric and surface integrals were both evaluated using a second-order finite volume dis-
cretization in a manner that was consistent, in terms of global conservation, with the flow solvers
used. For the work performed by the wall in the lid-driven cavity problem, the contribution

Figure 5. Typical structured and unstructured meshes used by the EHOA and ALE codes, respectively.
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Stream function 

Volumetric entropy generation 

Re=102 Re=103

Figure 6. Contour plots of stream function and volumetric entropy generation dissipation for the driven
cavity flow. Solutions calculated using EHOA on a 1282 mesh.

from the boundary of a single finite volume cell adjacent to the upper surface is

−wi ≈ �ub
ub − ui

�y
�x (33)

where the subscript b signifies a value on the boundary of the domain, the subscript i that at the
centre of the cell inside the domain, �y the distance from the cell centre to the boundary, and
�x the width of the cell. The surface integral was calculated by summing over all boundary cells.
Similarly, when evaluating the Nusselt number for the natural convection problem, the heat transfer
by conduction into a single finite volume at the sidewall of the cavity is

qi ≈ k
Tb − Ti

�x
�y (34)

with the integral for each wall being calculated by a simple summation over all cells.
The irreversible loss given by (20) was evaluated by calculating the cell centred gradients of

velocity, evaluating the cell viscous dissipation using these values, and integrating by multiplying
by the cell volume and summing over the cavity. Similarly, the expression for the Nusselt number in
(32) was evaluated by calculating the cell centre temperature gradient and integrating by multiplying
by the cell volumes and summing over the domain.
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Figure 7. Non-dimensional work for the driven cavity, plotted as a function of the reciprocal of the number
of finite volumes in the domain. Plotted for flows at Re= 102 (top) and 103 (bottom).
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Figure 8. Extrapolated values of non-dimensional work for the driven cavity.
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Table I. Raw values for the calculated volumetric and surface dimensionless work term
for the driven cavity, together with the values calculated using Richardson extrapolation

and the calculated order of convergence.

ALE Re= 102 ALE Re= 103

Volumetric Surface Volumetric Surface

N = 12174 4.00391 4.01800 9.49872 9.78503
N = 27164 4.01026 4.01646 9.59311 9.73280
N = 48112 4.01218 4.01587 9.63073 9.71215
Extrapolated 4.01411 4.01494 9.69258 9.67882
Error bounds ± 0.00241 ± 0.00116 ± 0.07781 ± 0.04153
Order of convergence 2.42 1.74 1.66 1.69
GCI (%) 0.06 0.03 0.80 0.43

EHOA Re= 102 EHOA Re= 103

Volumetric Surface Volumetric Surface

N = 16129 4.00261 4.01232 9.44632 9.70168
N = 36481 4.00874 4.01305 9.56499 9.68138
N = 65025 4.01088 4.01330 9.60689 9.67287
Extrapolated 4.01363 4.01361 9.66192 9.65696
Error bounds ± 0.00344 ± 0.00039 ± 0.06918 ± 0.01986
Order of convergence 1.99 2.03 1.96 1.48
GCI (%) 0.09 0.01 0.72 0.21

LID-DRIVEN CAVITY FLOW

The driven cavity flow was calculated for two different Reynolds numbers Re= 102 and 103,
using the regularized boundary condition of Shen [2] shown in Figure 1. The work done on the
cavity was evaluated using the surface integral given in (19) and the volumetric integral of viscous
dissipation given in (20), the calculated values being expressed in non-dimensional form using a
scaling of Q̇ref = �U 2

refL . The EHOA code calculated upon a regular Cartesian mesh, whilst ALE
used an unstructured mesh with uniform boundary mesh spacing. Contour plots for the stream
function and entropy generation are given in Figure 6.

In Figure 7 the calculated power dissipation is plotted as a function of the reciprocal of the number
of finite volume cells within the interior of the cavity, with the values estimated using Richardson
extrapolation being given in Figure 8, the error bars being calculated using the techniques described
by Celik [13]. The raw data from the three finest meshes are listed in Table I together with the
values calculated using Richardson extrapolation, the order of the mesh convergence, and the grid
convergence index (GCI) [13]. With refinement of the mesh the solutions for both codes and both
calculation methods converge to the same solution, within the estimated error bounds, although
the order of the convergence varies despite both the solvers and the integration methods being
nominally second-order accurate. For both solvers the surface integral estimates of work have
tighter error bounds.

The contour plots of the distribution of the viscous dissipation function in Figure 6 indicate
that the energy is lost in the shear layers adjacent to the lid and the upper part of the downstream

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:1407–1423
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Figure 9. Nusselt number for the natural convection flow in a side-heated cavity, plotted
as a function of the reciprocal of the number of finite volumes in the domain. Plotted

for flows at Ra = 104 (top) and 106 (bottom).

wall where the fluid is pushed against the boundary. As the Reynolds number is increased the
dissipation becomes concentrated in the boundary layer, and the error in the calculated power loss
increases for the volume and the surface integral methods alike. The overall concentration of the
dissipation in the cavity boundary layers suggests that inadequate resolution of the boundary layer
will affect the calculation of the power loss for both surface and volume integrals.

CONVECTION IN A CAVITY HEATED FROM THE SIDE

To demonstrate the use of the volumetric methods in the calculation of the heat transfer in a
convective flow, a standard benchmark natural convection flow was calculated for air (having a

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:1407–1423
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Figure 10. Contour plots of stream function, temperature and volumetric entropy generation for the side
headed cavity. Solutions calculated using EHOA on a 1282 mesh.

Prandtl number of Pr = 0.71) in a square cavity with isothermal vertical and adiabatic horizontal
boundaries [3] (see Figure 4). The problem was solved using EHOA and ALE on the same meshes
used for the driven cavity problem described above, at Rayleigh numbers of Ra = 104 and 106. The
Nusselt numbers were calculated by estimating the conduction from the walls via a second-order
approximation to the temperature gradient (34), and by solving the volume integral (32) evaluated
by summing the cell centre gradients over the domain. Contour plots for the stream function,
temperature and entropy generation are given in Figure 10.
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Figure 11. Extrapolated values of Nusselt number for the natural convection problem.

Table II. Raw values for the calculated volumetric and surface Nusselt number for
the natural convection problem, together with the values calculated using Richardson

extrapolation and the calculated order of convergence.

ALE Ra = 104 ALE Ra = 106

Volumetric Surface Volumetric Surface

N = 6891 2.24567 2.24615 8.86360 8.96259
N = 12174 2.24528 2.24528 8.85467 8.89475
N = 27164 2.24504 2.24482 8.83625 8.84993
Extrapolated 2.24488 2.24460 8.82467 8.81960
Error bounds ± 0.00020 ± 0.00027 ± 0.01445 ± 0.03778
Order of convergence 2.35 2.87 2.37 2.26
GCI (%) 0.01 0.01 0.16 0.43

EHOA Ra = 104 EHOA Ra = 106

Volumetric Surface Volumetric Surface

N = 9025 2.24591 2.24703 8.86454 8.93334
N = 16129 2.24543 2.24605 8.84774 8.88580
N = 36481 2.24509 2.24536 8.83532 8.85202
Extrapolated 2.24481 2.24482 8.82453 8.82510
Error bounds ± 0.00034 ± 0.00068 ± 0.01347 ± 0.03355
Order of convergence 1.99 2.00 1.88 1.99
GCI (%) 0.02 0.03 0.15 0.38

Figure 9 shows the mesh convergence of the estimates of the Nusselt number for cavities at
Ra = 104 and 106, together with the benchmark values from [3]. The extrapolated values with
estimates of the error range are shown in Figure 11, and the raw values, extrapolated values,
and order of the mesh convergence are given in Table II. As with the driven cavity data, all our
extrapolated values estimates agreed within the estimated error range. The extrapolated value for
the Nusselt number at Ra = 106 agrees well with the benchmark solution, but at Ra = 104 it does
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not, so much so that the benchmark value of Nu = 2.238 could not be plotted on the same graph.
This may be due to the relatively course mesh used for the calculations of the Ra = 104 flow in the
benchmark, which was only refined to a mesh of 402 points, as opposed to the current calculations
which were refined to a mesh of 1922 cells.

As with the driven cavity test case both the volumetric and surface integral calculations for
Nusselt number exhibited approximately second-order mesh convergence. However, unlike the
driven cavity case the volumetric estimate has a smaller error bound than that estimated by the
surface integral.

Contour plots of the stream function, temperature and volumetric entropy generation are given
in Figure 10. Compared to the driven cavity, the integrand for the entropy based heat transfer
estimate is significant over a larger part of the cavity. As with the driven cavity flow, the entropy
generation is concentrated at the boundaries of the domain the error in both the volume and surface
integration estimates for Nusselt number increase.

CONCLUSIONS

Volume-based methods for estimating irreversible energy losses and heat transfer rates from CFD
solutions have been presented and applied to a lid-driven cavity and to natural convection in a
cavity heated from the side. The volumetric methods were shown to be consistent with those
based on surface integrations of heat and work transfers across the domain boundaries. Neither the
volumetric or surface methods were shown to be superior across all test cases, having similar orders
of accuracy and error ranges. However, a plot of the fields used in the volumetric methods allows
an identification of regions that contribute to fluid losses, something that is not apparent from
the integral values given by the surface integral methods. The volumetric methods thus provide a
valuable new tool in the study of flow fields.

APPENDIX A: NOMENCLATURE

A area, m2

cP constant pressure specific heat, J/kgK
e specific internal energy, J/kg
E internal energy, J
Ec Eckert number, U 2/cp�T
g acceleration due to gravity, m/s2

GCI grid convergence index
k thermal conductivity, W/mK
L length scale, m
P pressure, N/m2

Pe Peclet number, UL/�
Pr Prandtl number, �/�
Nu Nusselt number, qL/k�T
q heat flux, W/m2

Q̇ heat transfer, W
Q̇irrev rate of irreversible heat loss, W
Q̇ref reference rate of energy loss, �U 2

refL , W
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Ra Rayleigh number, g��T L3/��
Re Reynolds number, UL/�
s specific entropy, J/kgK
Ṡ′′′ volumetric rate of entropy generation, W/km3

Ṡ′′′
ref reference volumetric rate of entropy generation, W/km3

S entropy, J/K
t time, s
T temperature, K
T0 reference temperature, K
u velocity vector, m/s
u x component of velocity, m/s
Uref reference velocity, m/s
v y component of velocity, m/s
V volume, m3

w z component of velocity, m/s
W work, W
x horizontal axis, m
y vertical axis, m
� thermal diffusivity, k/�cp
� coefficient for volumetric expansion for temperature, 1/K
� temperature ratio, �T /T0
� non-dimensional temperature, (T − T0)/�T
� dynamic viscosity, Ns/m2

� kinematic viscosity, �/�
� density, kg/m3

� viscous dissipation function, 1/s2
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